

B.TECH.
 (SEM IV) THEORY EXAMINATION 2022-23

 DIGITAL ELECTRONICS

 DIGITAL ELECTRONICS}

Time:3 Hours
Total Marks: 100
Note: Attempt all Sections. If require any missing data then choose suitably.

SECTION A

1. Attempt all questionsinbrief.

$$
2 \times 10=20
$$

(a) Explain Duality Principle. Prove that positive logic AND Gate is equivalent to negative logic OR Gate.
(b) Explain 2-input EX-NOR Gate and implement it using minimum number of 2input NOR Gates.
(c) Explain Half adder circuit and implement it using 2-input NAND Gates,
(d) Write down the differences between Combinational and Sequential digital circuits.
(e) Differentiate between Synchronous and Asynchronous sequential circuits.
(f) Explain in brief:- (i) Astable Multivibrator (ii) Bistable Multivibrator.
(g) Explain the working of a PISO type shift register briefly.
(h) What are Static and Dynamic Hazards?
(i) What is Noise Margin?
(j) What are the advantages of CMOS logic family?

SECTION B

2. Attempt any threct fthefollowing:
$10 x 3=30$
(a) Find the Sir (iffied logical expression for Y . $Y(A, B, C+B, E)=\sum m(0,2,4,7,8,10,12,16,18,20,23,24,25,26,27,28)$.
(b) Implentrit a 1:8 De-mux with selection lines A,B,C using 1:2 De-mux. Verify your implementation with the help of Truth Tables.
(c) What is Race-Around condition in J-K flip-flop? Explain it’s solution Master- Slave J-K Flip-Flop.
(d) Given the conditions, such that If input $\mathrm{A}=0$, the circuit oscillates between either one of the two cases. Case1:- 00-01-00-01 and Case2:- 10-11-10-11 And If A = 1, it switches inter between two cases. Draw the state transition diagram and implement the same using JK flip-flop and by using basic logic gates.
(e) Implement a 3-input NOR Gate using CMOS and DTL logic families. Also Explain the working in both cases.

SECTION C

3. Attempt any one part ofthe following:
(a) Implement NOT, OR, AND , EX-OR, EX-NOR, NOR (all 2-inputs except NOT Gate) gates using minimum number of 2-input NAND Gates.
(b) Convert all possible 4-bit binary codes into Gray Code. Also show the implementation circuit using 2-input EX-OR Gates only.
4. Attempt any one part ofthe following:
(a) Implement a circuit using logic gates that compares the magnitudes of two 4- bit numbers.
(b) Implement the Boolean function $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\sum \mathrm{m}(0,1,2,5,8,13,14)$ using $8: 1 \mathrm{MUX}$ with A,C,D as selection lines.
5. Attempt any one part ofthe following:

10x1=10
(a) Implement S-R, T, D flip-flops using J-K flip-flop. Also show the implementation with help of State Tables.
(b) Design a MOD-12 asynchronous down counter using T flip-flops.
6. Attempt any one part ofthe following:

10x1=10
(a) Given a sequential logic circuit expression as $\mathrm{X}(\mathrm{t}+1)=\mathrm{p}^{\prime} \mathrm{X}+\mathrm{pY} \mathrm{Y}(\mathrm{t}+1)=\mathrm{pX}$ ' +p ' Y where X and Y are the two flip-flop outputs and pis the main external input. Draw the state transition table for the above- given logic function. Also, draw the state transition diagramassociated with it.
(b) Design a synchronous3-bitFSM (which can be used for counting) using D flip-flops with no external inputs and count sequence as follows:- 0-1-3-7-4-2-0.
7. Attempt any one part ofthe following:
(a) Explain Propogation delay in logic families, Also explain why $\mathrm{T}_{\mathrm{PLH}}>\mathrm{T}_{\mathrm{PHL}}$.
(b) Explain ROM and its arious types. Implement a 4-T SRAM cell using MOSFETs.

